Refine Your Search

Topic

null

Search Results

Technical Paper

Combustion Analysis of Methanol-Fueled Active Thermo-Atmosphere Combustion (ATAC) Engine Using a Spectroscopic Observation

1994-03-01
940684
To analyze the combustion mechanism of the so-called Active Thermo-Atmosphere Combustion (ATAC) in a two-stroke S.I. engine, a measuring system to obtain images of radical luminescence in the combustion chamber was developed. The ATAC engine tested was equipped with a quartz windows as the cylinder head. The instantaneous luminescence from radical species was observed using an image intensifier with a single band pass filter for both conventional and ATAC operating conditions. At ATAC operation, emissions from OH radicals were observed before heat release began, and after that, emissions from CH were observed. It was found that the ignition was initiated over the entire area of the combustion chamber and “bulk-like” and/or “non propagating” combustion occurred during ATAC engine operation.
Technical Paper

Surrounding Gas Effects on Soot Formation and Extinction - Observation of Diesel Spray Combustion Using a Rapid Compression Machine

1993-03-01
930603
A single action rapid compression machine was developed to observe the soot formation and oxidation processes in a diesel spray flame. Two color method was applied to analyze the flame temperature and KL factor from the flame image taken by high speed camera. Variation in gas oxygen concentration of the surrounding gas was achieved by adding different quantities of pure oxygen, nitrogen, carbon dioxide and argon gases to charged air within a range from 17 to 25 vol.% oxygen to examine the effects of the surrounding gas composition and the temperature, and of the flame temperature on soot formation and extinction. The initial gas temperature has much effect not only on the ignition but on soot formation speed. The higher oxygen concentration gives the higher flame temperature and the faster soot oxidation rate in the flame. Carbon dioxide has a soot reduction effect in spite of its lower flame temperature.
X